

# **FloMass Drugs of Abuse in Hairs**

## **Reagents for 100 assays**

## **Instruction Manual**



#### EUM20100



For in vitro diagnostic use

€

**B.S.N. S.r.I. | Biological Sales Network** Tel. +39.0374.351005 Via Coelli, 18 26012 Castelleone (CR)

contact@bsn-srl.it bsn-srl.it





B.S.N. BIOLOGICAL SALES NETWORK S.R.L. 26012 Castelleone (CR) Italy - Via Coelli, 18 Tel. +39 0374 351005 - Fax +39 0374 57965 - e-mail: info@bsn-srl.it – bsn@postecert.it Reg. Imprese / C.F. / P.IVA: 11317290150 - R.E.A. di Cremona n. 143395



EUM20100



For in vitro diagnostic use

## C€

Document Version: 1 Date of revision: 8.01.2024 File name: M-EUM20100 (eng)



## CONTENTS

| 1  | INTE                                    | RODUCTION                                               | .4  |  |  |  |  |
|----|-----------------------------------------|---------------------------------------------------------|-----|--|--|--|--|
|    | 1.1                                     | IVD SYMBOLS                                             | . 4 |  |  |  |  |
|    | 1.2                                     | ABBREVIATIONS                                           | . 5 |  |  |  |  |
|    | 1.3                                     | CLINICAL APPLICATION                                    | . 6 |  |  |  |  |
| 2  | PRI                                     | NCIPLE OF THE METHOD                                    | .7  |  |  |  |  |
| 3  | CON                                     | IPONENTS AND ACCESSORIES                                | .8  |  |  |  |  |
|    | 3.1                                     | KITS CONTENTS                                           | . 8 |  |  |  |  |
|    | 3.2                                     | KIT SUPPORT ACCESSORIES                                 | . 8 |  |  |  |  |
|    | 3.3                                     | CONTROLS AND CALIBRATION OF THE ANALYTICAL SYSTEM       | . 9 |  |  |  |  |
|    | 3.4                                     | CHROMATOGRAPHIC SYSTEM                                  | . 9 |  |  |  |  |
| 4  | REO                                     | UIRED INSTRUMENTS                                       | 10  |  |  |  |  |
|    | 4.1                                     | REQUIRED HPLC MODULES                                   |     |  |  |  |  |
|    | 4.2                                     | REQUIRED EQUIPMENT AND MATERIALS FOR SAMPLE PREPARATION |     |  |  |  |  |
| 5  | HPL                                     | C-MS/MS SYSTEM CONDITIONS                               | 10  |  |  |  |  |
| 6  | SOU                                     | RCE PARAMETERS AND TRANSITIONS                          | 12  |  |  |  |  |
|    | 6.1                                     | SOURCE PARAMETERS                                       |     |  |  |  |  |
|    | 6.2                                     | TRANSITIONS                                             | 12  |  |  |  |  |
| 7  | SAM                                     | IPLE PREPARATION                                        | 14  |  |  |  |  |
|    | 7.1                                     | SAMPLE PREPARATION                                      | 14  |  |  |  |  |
| 8  | COL                                     | LECTION AND STORAGE OF SAMPLES                          | 15  |  |  |  |  |
| 9  | V۵I                                     | IDATION DATA                                            | 15  |  |  |  |  |
| -  | 9.1                                     | LINEARITY, DETECTION LIMITS AND QUANTIFICATION          | -   |  |  |  |  |
|    | 9.2                                     | RECOVERY                                                |     |  |  |  |  |
|    | 9.3                                     | PRECISION                                               |     |  |  |  |  |
| 10 | GEN                                     | ERAL LIMITATIONS                                        | 18  |  |  |  |  |
| 11 | REF                                     | ERENCES                                                 | 18  |  |  |  |  |
|    |                                         |                                                         | _   |  |  |  |  |
| A  | ANNEX 1: EC DECLARATION OF CONFORMITY20 |                                                         |     |  |  |  |  |



## **TABLES INDEX**

| Table 1: Analytes measured by FloMass Drugs of Abuse in Urine                             | 6    |
|-------------------------------------------------------------------------------------------|------|
| Table 2: Analytes measured by kit EUM20100 and related internal standards                 |      |
| Table 3: Components, description, quantity and storage of kit EUM20100                    | 8    |
| Table 4: Accessories, description, quantity and storage of kit EUM20100                   | 8    |
| Table 5: Chromatographic gradient of kit EUM20100                                         | 11   |
| Table 6: Detected transitions, retention times and potentials using HPLC Shimadzu + Scie> | mass |
| spectrometer                                                                              | 14   |
| Table 7: LLOD, LLOQ and linearity                                                         | 16   |
| Table 8: Average, minimum and maximum recovery values                                     | 17   |
| Table 9: Intra-assay, inter-assay and total precision                                     | 18   |

## **FIGURES INDEX**

| Figure 1: Plumbing configuration                                | 9  |
|-----------------------------------------------------------------|----|
| Figure 2: Example of chromatogram identified using kit EUM20100 | 11 |



## **1** INTRODUCTION

#### 1.1 IVD SYMBOLS

In vitro diagnostic medical device / Dispositif médical de diagnostique en vitro/In-Vitro-Diagnostikum / IVD Producto sanitario para diagnóstico in vitro / Dispositivo medico-diagnostico in vitro / Dispositivo médico para in til in vitro diagnostik Batch code / Code du lot / Chargenbezeichnung / Código de lote / Codice del lotto / Código do lote / LOT Número do lote / Lotnummer Packing number / Numéro d'emballage / Packnummer / Número de envase / Numero confezioni / ΡN Número de embalagem / Número de embalagem / Emballagenummer Catalog number / Référence du catalogue / Bestellnummer / Número de catálogo / Numero di REF catalogo / Referência de catálogo / Código / Katalognummer Use by / Utiliser jusqu'au / Verwendbar bis / Fecha de caducidad / Utilizzare entro / Prazo de validade / Data limite de utilização / Holdbar til Temperature limitation / Limites de température / Temperaturbegrenzung / Limite de temperatura / Limiti di temperatura / Limites de temperatura / Limite de temperatura / Temperaturbegrænsning Add liquid / Ajout de liquide / Flüssigkeit zugeben / Añadir líquido / Aggiungi liquido / Adicionar líquido / Adicionar líquido / Tilføj væske Store in the dark / Conserver à l'abri de la lumière / Dunkel aufbewahren / Almacenar en ambiente oscuro / Conservare al buio / Armazenar no escuro / Guardar longe da luz / Opbevares mørkt Contains sufficient for <n> tests / Contenu suffisant pour "n" tests / Inhalt ausreichend für <n> Prüfungen / Contenido suficiente para <n> ensavos /Contenuto sufficiente per "n" saggi / Conteúdo suficiente para "n" ensaios / Conteúdo suficiente para <n> testes / Indeholder tilstrækkeligt til "n" test Consult instructions for use / Consulter les instructions d'utilisation / Gebrauchsanweisung beachten / Consulte las instrucciones de uso / Consultare le istruzioni per l'uso / Consulte as instruções de i utilização / Consultar Instruções de uso / Se brugsanvisning Manufacturer / Fabricant / Hersteller / Fabricante / Fabbricante / Fabricante / Fabricado por / Producent This way up / Haut / Diese Seite oben / Este lado arriba / Questo lato in alto / Este lado para cima / Este lado para cima / Denne side op



Recyclable / Recyclable / Recyclebar / Reciclable / Riciclabile / Reciclável / Reciclável / Genanvendeligt



Brittle / Fragile / Zerbrechilich / Fragile / Fragil / Skrøbelig



#### 1.2 ABBREVIATIONS

11-OH-THC: 11-Hydroxy-Tetrahydrocannabinol 4-ANPP: 4-Aminophenyl-1-phenethylpiperidine 6-MAM: 6-MonoAcetylMorphine **BEG: Benzoylecgonine** CAD: Collision Gas Pressure CE: Collision energy CLSI: Clinical and Laboratory Standards Institute CUR: Curtain Gas CV: Coefficient of Variation **CXP: Collision Exit Potential DP: Desolvation Potential** EDDP: 2-Ethyliden-1,5-Dimethyl-3,3-Diiphenylpyrrolidine EME: Ecgonine Methyl Esther **EP: Entrance Potential** ESI: Electrospray Ionization GS1: Gas 1 GS2: Gas 2 HPLC-MS/MS: High Performance Liquid chromatography-tandem mass spectrometry IS: Ion Spray Voltage LLOD: Lower Limit of Detection LLOQ: Lower Limit di Quantification M/Z: Mass/Charge ratio MBDB: 3,4-metilendiossi-N-metil-a-etilfeniletilammina MDA: 3,4-methylenedioxy-N-amphetamine MDE: 3,4-methylenedioxy-N-ethyl amphetamine MDMA: 3,4-methylendioxy methamphetamine MPA: Mobile Phase A MPB: Mobile Phase B MPB: Mobile Phase C MRM: Multiple Reactions Monitoring PP: Polypropylene Q1: Quadrupole 1 Q3: Quadrupole 3 **RT:** Retention Time S/N: Signal/Noise ratio TEM: Source temperature THC: Tetrahydrocannabinol



#### 1.3 CLINICAL APPLICATION

FloMass Drugs of Abuse in Hairs is an in vitro diagnostic kit intended for the quantitative and simultaneous determination of drugs of abuse in human hair samples (Table 1) using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS).

| ANALYTE          |
|------------------|
| Amphetamine      |
| Metamphetamine   |
| MDA              |
| MDE              |
| MDMA             |
| MBDB             |
| Cocaine          |
| BEG              |
| EME              |
| Coca ethylene    |
| Morphine         |
| Codeine          |
| Dihydrocodeine   |
| 6-MAM            |
| ТНС              |
| 11-ОН-ТНС        |
| Methadone        |
| EDDP             |
| Buprenorphine    |
| Norbuprenorphine |
| Ketamine         |

Table 1: Analytes measured by FloMass Drugs of Abuse in Urine

The terms "psychoactive substance" or "drug" identify any substance able to change the mood, perception of reality or behavior of the person who assume the substance. There are several ways to assume drugs (orally, intravenously, inhalation) and it's possible to detect substances in many tissues and biological fluids. Rapid screening tests with immunochromatographic and immunochemical methods are used for the determination of drug of abuse assumption. They are based on antigen-antibody interaction. They are neither specific nor sensitive and they are able only to identify family drug. These tests can suffer from interferences that can lead to a false positive test result.

The analysis in hairs can also provide information on the intake of these substances over time as they are deposited within the keratin matrix and are very stable in it. High performance liquid chromatography method coupled with tandem mass spectrometry (HPLC-MS/MS) present



significant advantages compared to with immunometric techniques as greater specificity, lower limits of detection and the possibility of giving results in terms of quality and quantity [1-7].

## **2** PRINCIPLE OF THE METHOD

The kit is intended for the quantitative and simultaneous determination of drugs of abuse using high performance liquid chromatography technique coupled with tandem mass spectrometry (HPLC-MS/MS).

The preparation of the sample involves a first phase of washing hairs, followed by a shredding performed by hand or with a ball mill and finally the extraction of the analyte from the hair matrix. During extraction Internal Standard marked with stable isotopes are added to treated urine (Table 2). Finally, sample is diluted and analyzed by HPLC-MS/MS technique.

| ANALYTE          | INTERNAL STANDARD                            |
|------------------|----------------------------------------------|
| Amphetamine      | Amphetamine <sup>2</sup> H <sub>11</sub>     |
| Methamphetamine  | Methamphetamine <sup>2</sup> H <sub>5</sub>  |
| MDA              | MDA <sup>2</sup> H <sub>5</sub>              |
| MDE              | MDE <sup>2</sup> H <sub>5</sub>              |
| MDMA             | MDMA <sup>2</sup> H <sub>5</sub>             |
| MBDB             | MBDB <sup>2</sup> H <sub>5</sub>             |
| Cocaine          | Cocaine <sup>2</sup> H <sub>3</sub>          |
| BEG              | BEG <sup>2</sup> H <sub>3</sub>              |
| EME              | EME <sup>2</sup> H <sub>3</sub>              |
| Coca ethylene    | Coca ethylene ²H₃                            |
| Morphine         | Morphine <sup>2</sup> H₃                     |
| Codeine          | Codeine <sup>2</sup> H <sub>6</sub>          |
| Dihydrocodeine   | Dihydrocodeine <sup>2</sup> H <sub>6</sub>   |
| 6-MAM            | 6-MAM <sup>2</sup> H <sub>3</sub>            |
| THC              | THC <sup>2</sup> H <sub>3</sub>              |
| 11-OH-THC        | 11-OH-THC <sup>2</sup> H <sub>3</sub>        |
| Methadone        | Methadone <sup>2</sup> H₃                    |
| EDDP             | EDDP <sup>2</sup> H <sub>3</sub>             |
| Buprenorphine    | Buprenorphine <sup>2</sup> H <sub>4</sub>    |
| Norbuprenorphine | Norbuprenorphine <sup>2</sup> H <sub>3</sub> |
| Ketamine         | Ketamine <sup>2</sup> H <sub>4</sub>         |

Table 2: Analytes measured by kit EUM20100 and related internal standards

Once extracted, analytes are chromatographically separated by a specific reverse phase column. Subsequently, they enter in ESI source where they are transferred to the gas phase and ionized.



Then ions enter in the triple quadrupole mass spectrometer, where they are measured in MRM mode.

Thus, only selected ions with defined mass/charge ratio (m/z) are isolated in the first quadrupole and subsequently transferred into the collision cell where they are fragmented by impact with an inert gas (nitrogen or argon). Among the fragments, only those with defined m/z ratio are isolated in the third quadrupole for subsequent detection.

Measurement in MRM mode with HPLC separation ensure high selective and sensitive analyte identification and quantification [3-9].

## **3 COMPONENTS AND ACCESSORIES**

#### 3.1 KITS CONTENTS

Components for sample preparation included in the kit are shown in Table 3.

| CATALOG NUMBER | DESCRIPTION             | QUANTITY | STORAGE            |
|----------------|-------------------------|----------|--------------------|
| EUM02011       | Mobile Phase A          | 600 mL   | Room temperature * |
| EUM02012       | Mobile Phase B          | 500 mL   | Room temperature   |
| EUM02013       | Mobile Phase C          | 500 mL   | Room temperature   |
| EUM20021       | Wash Solution           | 440 mL   | Room temperature   |
| EUM20022       | Reconstituting Solution | 440 mL   | Room temperature   |
| EUM20023       | Extraction Solution     | 45 mL    | Room temperature   |
| EUM20024       | Diluting solution       | 20 mL    | Room temperature   |
| EUM20031       | Internal Standard Mix   | 4.5mL    | -20°C              |

Table 3: Components, description, quantity and storage of kit EUM20100

\*After opening store MPA at 2-8°C.

The kit consists of reagents for 100 assays.

The expiry date of the intact kit is shown on external product label. Follow storage conditions given on the product label of each component of the kit and keep it away from light and/or heat.

#### 3.2 KIT SUPPORT ACCESSORIES

| CATALOG NUMBER | DESCRIPTION            | QUANTITY       | STORAGE          |
|----------------|------------------------|----------------|------------------|
| EUM20041       | 6-Levels Calibrators   | 3 x 6 x 0.4 mL | -20°C            |
| EUM20051       | 2-Levels Control       | 3 x 2 x 0.4 mL | -20°C            |
| EUM00C02       | Chromatographic Column | l pcs          | Room Temperature |
| EUM00A04       | Precolumn              | 4 pcs          | Room Temperature |
| EUM00A05       | Holder + precolumn     | 1 pc           | Room Temperature |

Table 4: Accessories, description, quantity and storage of kit EUM20100



#### 3.3 CONTROLS AND CALIBRATION OF THE ANALYTICAL SYSTEM

Calibration should be done using 6-Levels Calibrators (EUM20041) containing the analytes. Calibrators should follow patient samples preparation starting at step 8 of the procedure (Chapter 7). A new calibration series should be prepared for each analytical run.

BSN supplies quality control sets at two different concentration levels (EUM20051). Controls from extracted hairs are useful to verify the accuracy and precision of analytical procedures and to determine the analysis in the matrix. Controls must be prepared following the sample preparation from step 8 (Chapter 7).

For analytes concentrations, stability and accessories preparation, refer to package leaflets.

#### 3.4 CHROMATOGRAPHIC SYSTEM

The kit has been validated using analytical column (EUM00C02) coupled to the precolumn (EUM00A04) and its holder (EUM00A05).

Stress tests on column showed that it is possible to carry out approximately 200-250 analysis in matrix with a single precolumn. It is recommended to perform some blank injections before each analytical run and verify the backpressure values.

Procedure involves the use of 3 mobile phases (A, B and C) and therefore, beside the binary pump, an additional isocratic pump and a 6-port switching valve are needed (see Figure 1).



Figure 1: Plumbing configuration



## 4 REQUIRED INSTRUMENTS

The method requires a HPLC system with tandem mass spectrometer and dedicated software. Triple quadrupole mass spectrometer should be medium or medium-high level. (A high-level instrument is required for Norbuprenorphine).

#### 4.1 REQUIRED HPLC MODULES

- 1. Binary pump able to support a backpressure of 400 bar or more
- 2. Additional pump
- 3. 6-port switching valve
- 4. Autosampler with cooling function (10°C)
- 5. Column Heater (40°C)
- 6. Degasser to module 1 and 2

#### 4.2 REQUIRED EQUIPMENT AND MATERIALS FOR SAMPLE PREPARATION

- 1. Centrifuge (10000-13000 rpm) for 1.5- or 2-mL vials
- 2. Vortex for vials
- 3. Pipettes and tips
- 4. 1.5- or 2-mL PP vials
- 5. Autosampler vials with plastic adapter for 200  $\mu L$
- 6. Thermoblock at 45°C
- 7. Ball mill, 7-mL tubes and balls for ball mill
- 8. Nitrogen evaporator
- 9. Thermostated ultrasonic batth
- 10. Chemical hood

## **5 HPLC-MS/MS SYSTEM CONDITIONS**

Ionization: ESI positive mode MS/MS: specific MRM Injection volume: 15 μL (variable according to instrumental sensitivity) Running time: 12 min Column heater: 40°C



#### **Cromatographic gradient**

| TIME<br>(min) | %MPA | %MPB | MS Valve | MPC Flow<br>(mL/min) | Total Flow<br>(mL/min) |
|---------------|------|------|----------|----------------------|------------------------|
| 0.00          | 95   | 5    | MS       | 0.05                 | 0.30                   |
| 0.30          |      |      | Waste    | 0.30                 | 0.30                   |
| 1.00          | 95   | 5    |          |                      | 0.30                   |
| 2.10          |      |      | MS       | 0.30                 | 0.30                   |
| 2.15          |      |      |          | 0.05                 | 0.30                   |
| 8.00          | 2    | 98   |          |                      | 0.30                   |
| 9.50          | 2    | 98   |          |                      | 0.30                   |
| 9.60          | 100  | 0    |          |                      | 0.30                   |
| 9.65          |      |      |          |                      | 0.30                   |
| 9.70          |      |      |          |                      | 0.40                   |
| 11.95         | 95   | 5    |          |                      | 0.40                   |
| 12.00         |      |      |          |                      | Stop                   |

Table 5: Chromatographic gradient of kit EUM20100

**Column conditioning**: column should be conditioned for 5 min at the chromatographic condition initial. Then run 3 blank samples (MPA only) using the gradient as above.

**Backpressure**: at a flow rate of 0.3 mL/min, chromatographic system backpressure should not exceed 450 bar.

**Column storage**: in order to preserve the column once detached from instrument, it is necessary to leave it in the initial conditions of the chromatographic gradient and insert it in the suitable package closing firmly with caps.

#### Example of chromatogram





### **6** SOURCE PARAMETERS AND TRANSITIONS

#### 6.1 SOURCE PARAMETERS

Source parameters used in MS the Method of EUM20100 with a Sciex series X500 QTrap mass spectrometer are shown below.

Curtain Gas (CUR): 30 psi Collision Gas Pressure (CAD): Medium Ion Spray Voltage (IS): 5000 V (MRM+) Temperature (TEM): 500°C Gas 1 (GS1): 55 psi Gas 2 (GS2): 60 psi

#### 6.2 TRANSITIONS

Monitored mass transitions and the MS parameters for each analyte using HPLC Shimadzu Nexera combined with the Sciex series X500 QTrap mass spectrometer are shown in Table 6. ESI positive mode.

| ANALYTE            | TR  | Q1    | Q3    | DP | EP | CE | СХР |
|--------------------|-----|-------|-------|----|----|----|-----|
| Amphetamine 1      | 4.5 | 136.1 | 91.1  | 45 | 10 | 23 | 10  |
| Amphetamine 2      | 4.5 | 136.1 | 119.1 | 45 | 10 | 11 | 12  |
| Amphetamine IS     | 4.5 | 147.1 | 130.0 | 45 | 10 | 11 | 12  |
| Methamphetamine 1  | 4.7 | 150.2 | 91.1  | 30 | 10 | 26 | 10  |
| Methamphetamine 2  | 4.7 | 150.2 | 119.1 | 30 | 10 | 14 | 12  |
| Methamphetamine IS | 4.7 | 155.2 | 92.0  | 30 | 10 | 26 | 10  |
| MDA 1              | 4.6 | 180.1 | 133.1 | 30 | 10 | 22 | 12  |
| MDA 2              | 4.6 | 180.1 | 163.1 | 30 | 10 | 25 | 12  |
| MDA IS             | 4.6 | 185.1 | 138.1 | 30 | 10 | 22 | 12  |
| MDE 1              | 5.0 | 208.2 | 163.1 | 30 | 10 | 25 | 12  |
| MDE 2              | 5.0 | 208.2 | 105.0 | 30 | 10 | 30 | 12  |
| MDE IS             | 5.0 | 213.2 | 163.1 | 30 | 10 | 25 | 12  |
| MDMA 1             | 4.8 | 194.1 | 163.1 | 30 | 10 | 16 | 14  |
| MDMA 2             | 4.8 | 194.1 | 105.1 | 30 | 10 | 32 | 12  |
| MDMA IS            | 4.8 | 199.1 | 165.1 | 30 | 10 | 16 | 14  |
| MBDB 1             | 5.1 | 208.2 | 177.1 | 45 | 10 | 15 | 8   |
| MBDB 2             | 5.1 | 208.2 | 135.2 | 45 | 10 | 25 | 8   |
| MBDB IS            | 5.1 | 213.2 | 179.1 | 45 | 10 | 15 | 8   |
| Cocaine 1          | 5.7 | 304.2 | 182.2 | 50 | 10 | 30 | 14  |



| ANALYTE           | TR  | Q1    | Q3    | DP | EP | CE | СХР |
|-------------------|-----|-------|-------|----|----|----|-----|
| Cocaine 2         | 5.7 | 304.2 | 77.0  | 50 | 10 | 77 | 6   |
| Cocaine IS        | 5.7 | 307.3 | 185.1 | 50 | 10 | 30 | 14  |
| BEG 1             | 5.4 | 290.1 | 168.2 | 40 | 10 | 30 | 15  |
| BEG 2             | 5.4 | 290.1 | 82.0  | 40 | 10 | 40 | 12  |
| BEG IS            | 5.4 | 293.1 | 171.1 | 40 | 10 | 30 | 15  |
| EME 1             | 2.6 | 200.1 | 82.0  | 40 | 10 | 35 | 6   |
| EME 2             | 2.6 | 200.1 | 150.0 | 40 | 10 | 28 | 12  |
| EME IS            | 2.6 | 203.1 | 85.0  | 40 | 10 | 35 | 6   |
| Coca ethylene 1   | 6.1 | 318.3 | 196,1 | 70 | 10 | 30 | 10  |
| Coca ethylene 2   | 6.1 | 318.3 | 82,1  | 70 | 10 | 45 | 10  |
| Coca ethylene IS  | 6.1 | 321.3 | 199,1 | 70 | 10 | 30 | 10  |
| Morphine 1        | 3.9 | 286.1 | 152.2 | 15 | 10 | 73 | 12  |
| Morphine 2        | 3.9 | 286.1 | 165.1 | 15 | 10 | 47 | 14  |
| Morphine IS       | 3.9 | 289.1 | 152.1 | 15 | 10 | 73 | 12  |
| Codeine 1         | 4.5 | 300.1 | 152.1 | 60 | 10 | 84 | 12  |
| Codeine 2         | 4.5 | 300.1 | 165.0 | 60 | 10 | 45 | 12  |
| Codeine IS        | 4.5 | 306.1 | 152.1 | 60 | 10 | 84 | 12  |
| Dihydrocodeine 1  | 4.5 | 302.1 | 199.2 | 60 | 10 | 42 | 12  |
| Dihydrocodeine 2  | 4.5 | 302.1 | 128.2 | 60 | 10 | 83 | 12  |
| Dihydrocodeine IS | 4.5 | 308.1 | 202.0 | 60 | 10 | 42 | 12  |
| 6-MAM 1           | 4.7 | 328.1 | 165.1 | 90 | 10 | 50 | 14  |
| 6-MAM 2           | 4.7 | 328.1 | 211.2 | 90 | 10 | 35 | 14  |
| 6-MAM IS          | 4.7 | 331.1 | 165.1 | 90 | 10 | 50 | 14  |
| THC 1             | 9.5 | 315.1 | 193.1 | 50 | 10 | 31 | 10  |
| THC 2             | 9.5 | 315.1 | 123.0 | 50 | 10 | 45 | 10  |
| THC IS            | 9.5 | 318.3 | 196.1 | 50 | 10 | 31 | 10  |
| 11-OH-THC 1       | 8.1 | 331.1 | 193.1 | 60 | 10 | 35 | 10  |
| 11-OH-THC 2       | 8.1 | 331.1 | 201.1 | 60 | 10 | 34 | 10  |
| 11-OH-THC IS      | 8.1 | 334.2 | 196.1 | 60 | 10 | 35 | 10  |
| Methadone 1       | 7.2 | 310.2 | 265.2 | 40 | 10 | 19 | 20  |
| Methadone 2       | 7.2 | 310.2 | 105.2 | 40 | 10 | 38 | 12  |
| Methadone IS      | 7.2 | 313.3 | 268.2 | 40 | 10 | 19 | 20  |
| EDDP 1            | 7.0 | 278.2 | 234.3 | 70 | 10 | 40 | 14  |
| EDDP 2            | 7.0 | 278.2 | 249.3 | 70 | 10 | 30 | 14  |
| EDDP IS           | 7.0 | 281.1 | 234.3 | 70 | 10 | 40 | 14  |
| Buprenorphine 1   | 6.6 | 468.3 | 414.1 | 80 | 10 | 45 | 20  |
| Buprenorphine 2   | 6.6 | 468.3 | 396.1 | 80 | 10 | 50 | 20  |
| Buprenorphine IS  | 6.6 | 472.1 | 400.1 | 80 | 10 | 50 | 20  |



| ANALYTE             | TR  | Q1    | Q3    | DP | EP | CE | СХР |
|---------------------|-----|-------|-------|----|----|----|-----|
| Norbuprenorphine 1  | 5.7 | 414.0 | 414.0 | 80 | 10 | 40 | 10  |
| Norbuprenorphine 2  | 5.7 | 414.0 | 83.2  | 80 | 10 | 70 | 10  |
| Norbuprenorphine IS | 5.7 | 417.0 | 417.0 | 80 | 10 | 40 | 10  |
| Ketamine 1          | 5.0 | 238.2 | 125.0 | 40 | 10 | 37 | 12  |
| Ketamine 2          | 5.0 | 238.2 | 179.1 | 40 | 10 | 23 | 12  |
| Ketamine IS         | 5.0 | 242.2 | 183.0 | 40 | 10 | 23 | 12  |

Table 6: Detected transitions, retention times and potentials using HPLC Shimadzu + Sciex mass spectrometer

## 7 SAMPLE PREPARATION

Calibrators and controls follow the same samples preparation starting from step 8.

#### 7.1 SAMPLE PREPARATION

- 1. Bring a sample strand of at least 50 mg, segmenting them as little as possible, into a 7 mL mill tube
- 2. Add 4 mL of Wash Solution (EUM20021), vortex for 1 min, remove the supernatant
- 3. Add 4 mL of Reconstituting Solution (EUM20022), vortex for 1 min, remove the supernatant
- 4. Remove the solvent residue by leaving the open tube in the dry bath at 45°C for 10 min
- 5. Add 20 steel balls in each tube and grind the entire quantity using the mill with the following operating conditions: rate = 5.3 m/s, cycle time = 3 min, nr cyles = 3, waiting time among two cycles = 20 sec
- 6. After removing steel balls, weigh exactly about 20 mg in vials
- 7. Add 400 µL of Extraction Solution (EUM20023)
- 8. Vortex for 30 sec
- 9. Incubate over night at 60°C
- 10. Add 40  $\mu L$  of Internal Standard Mix (EUM20031) \*
- 11. Vortex for 30 sec
- 12. Place in the ultrasonic bath at no more than  $60^{\circ}$ C for 2.5 h
- 13. After centrifuging at 12000 rpm for 5 min, add 20  $\mu L$  of supernatant in a different tube
- 14. Add 180 µL of Extracting Solution (EUM20024)
- 15. Inject in the HPLC-MS/MS system.

\* For calibrators and controls add the Internal Standard Mix directly in their vials.



### 8 COLLECTION AND STORAGE OF SAMPLES

The kit is intended for the analysis of human hairs samples collected with standard methods, such as those described in Guidelines of Italian NHS [10].

**Stability of the samples**: The removal of the hair matrix is not invasive, but it is essential to follow the Standard Operating Procedures throughout the process from collection, storage to transport to the toxicology laboratory that will carry out the analysis. Transport and storage do not require special precautions, they are normally carried out at room temperature and in the dark. Under these conditions, the concentrations of the drugs of abuse in question remain stable for up to 3 months [1].

## **9 VALIDATION DATA**

Validation data have been obtained with an HPLC-MS/MS system consisting of a HPLC Shimadzu Nexera coupled to a Sciex 6500 QTrap triple quadrupole mass spectrometer.

Refer to Paragraph 4.2 for the materials and equipment used in the sample preparation.

#### 9.1 LINEARITY, DETECTION LIMITS AND QUANTIFICATION

A linear regression analysis of real values concentration has been completed to evaluate linearity of calibration curve for each analytic session.

Linearity range of acceptability corresponds to  $R^2 \ge 0.98$ . All values obtained are higher than the above-mentioned value.

Detection limit (LLOD) and quantification limit (LLOQ), which concentration provide a peak with S/N>3 and S/N>10 respectively, are reported in the table below (Table 7).

| ANALYTE         | LINEARITA' (pg/mg) | LLOD (pg/mg) | LLOQ (pg/mg) |
|-----------------|--------------------|--------------|--------------|
| Amphetamine     | 5.21 – 10000       | 1.56         | 5.21         |
| Methamphetamine | 1.75 – 10000       | 0.525        | 1.75         |
| MDA             | 2.02 – 10000       | 0.605        | 2.02         |
| MDE             | 3.35 – 10000       | 1.01         | 3.35         |
| MDMA            | 0.621 – 10000      | 0.186        | 0.621        |
| MBDB            | 0.646 – 10000      | 0.194        | 0.646        |
| Cocaine         | 0.604 – 25000      | 0.181        | 0.604        |
| BEG             | 0.161 – 2500       | 0.048        | 0.161        |
| EME             | 0.094 – 2500       | 0.028        | 0.094        |
| Cocaethylene    | 0.228 – 2500       | 0.068        | 0.228        |
| Morphine        | 0.682 – 20000      | 0.204        | 0.682        |
| Codeine         | 0.794 – 20000      | 0.238        | 0.794        |



| ANALYTE          | LINEARITA' (pg/mg) | LLOD (pg/mg) | LLOQ (pg/mg) |  |  |  |
|------------------|--------------------|--------------|--------------|--|--|--|
| Dihydrocodeine   | 0.750 – 20000      | 0.225        | 0.750        |  |  |  |
| 6-MAM            | 1.40 – 20000       | 0.420        | 1.40         |  |  |  |
| ТНС              | 0.581 – 2500       | 0.174        | 0.581        |  |  |  |
| тнс-он           | 1.57 – 2500        | 0.473        | 1.57         |  |  |  |
| Methadone        | 3.20 – 10000       | 0.961        | 3.20         |  |  |  |
| EDDP             | 0.218 – 2500       | 0.065        | 0.218        |  |  |  |
| Buprenorphine    | 0.419 – 1000       | 0.126        | 0.419        |  |  |  |
| Norbuprenorphine | 1.51 – 1000        | 0.454        | 1.51         |  |  |  |
| Ketamine         | 1.96 – 10000       | 0.588        | 1.96         |  |  |  |

Table 7: LLOD, LLOQ and linearity

#### 9.2 RECOVERY

Increasing amount of standard has been added to 3 blank extracted matrix pools to evaluate the analytical recovery characteristics. Three different levels of enriched urine (low, medium and high level) have been obtained.

Recovery = (Measured quantity on enriched matrix - Measured quantity on non-enriched matrix) / Added quantity

Average recovery range of acceptability =  $\pm 20\%$ , all the values obtained are higher than the abovementioned value.

| ANALYTE         | AVERAGE RECOVERY (%) | MIN RECOVERY (%) | MAX RECOVERY (%) |  |  |
|-----------------|----------------------|------------------|------------------|--|--|
| Amphetamine     | 102.2                | 86.3             | 112.3            |  |  |
| Methamphetamine | 111.9                | 107.2            | 115.3            |  |  |
| MDA             | 109.5                | 103.9            | 116.8            |  |  |
| MDE             | 106.2                | 90.6             | 119.2            |  |  |
| MDMA            | 109.2                | 106.4            | 112.9            |  |  |
| MBDB            | 110.6                | 101.5            | 119.9            |  |  |
| Cocaine         | 109.7                | 105.1            | 112.4            |  |  |
| BEG             | 109.5                | 105.2            | 114.7            |  |  |
| EME             | 109.8                | 107.1            | 115.3            |  |  |
| Coca Ethylene   | 110.8                | 107.5            | 114.4            |  |  |
| Morphine        | 110.1                | 106.2            | 115.6            |  |  |
| Codeine         | 108.2                | 105.7            | 111.1            |  |  |
| Dihydrocodeine  | 107.3                | 97.8             | 111.6            |  |  |
| 6-MAM           | 110.8                | 107.4            | 115.6            |  |  |
| THC             | 110                  | 107.7            | 113.2            |  |  |
| THC-OH          | 108.9                | 105.4            | 116.4            |  |  |



| ANALYTE          | AVERAGE RECOVERY (%) | MIN RECOVERY (%) | MAX RECOVERY (%) |  |  |
|------------------|----------------------|------------------|------------------|--|--|
| Methadone        | 109.6                | 103.4            | 114.2            |  |  |
| EDDP             | 109.5                | 107.1            | 115.2            |  |  |
| Buprenorphine    | 108.9                | 101.5            | 118.7            |  |  |
| Norbuprenorphine | 108.4                | 92.4             | 122.1            |  |  |
| Ketamine         | 109.5                | 102.1            | 116              |  |  |

Table 8: Average, minimum and maximum recovery values

#### 9.3 PRECISION

Average concentration values (pg/mg) measured in the 3 pools enriched with increasing concentrations of analytes (medium and high level) are reported in Table 9.

Precision has been evaluated as intra-assay, inter-assay and total coefficient of variation.

Intra-assay precision has been determined assaying 10 replicates (n=10) of each sample. Inter-assay precision has been determined assaying 3 repetitions in 8 analytical series (n=24) for each sample.

Total CV% =  $(CV\%Intra^2 + CV\%Inter^2)^{1/2}$ 

Range of acceptability used for each variation coefficient are reported below.

Range of acceptability CV% Intra-assay = 10%

Range of acceptability CV% Inter-assay = 20%

Range of acceptability CV% Total = 20%

#### Obtained results respect the imposed ranges of acceptability.

| ANALYTE         | AVER. CONC<br>(pg/mg) |        |      | INTRA CV% |        |      | INTER CV% |        |      | TOTAL CV% |        |      |
|-----------------|-----------------------|--------|------|-----------|--------|------|-----------|--------|------|-----------|--------|------|
|                 | Low                   | Medium | High | Low       | Medium | High | Low       | Medium | High | Low       | Medium | High |
| Amphetamine     | 174                   | 853    | 1652 | 5.1%      | 2.6%   | 1.5% | 12.7%     | 11.8%  | 9.9% | 14%       | 12%    | 10%  |
| Methamphetamina | 99.8                  | 182    | 890  | 1.2%      | 1.7%   | 2.4% | 3.3%      | 2.7%   | 3.2% | 4%        | 3%     | 4%   |
| MDA             | 184                   | 891    | 1743 | 6.0%      | 4.5%   | 3.3% | 6.5%      | 4.2%   | 4.5% | 9%        | 6%     | 6%   |
| MDE             | 182                   | 896    | 1734 | 4.5%      | 1.8%   | 2.3% | 9.7%      | 8.3%   | 5.8% | 11%       | 8%     | 6%   |
| MDMA            | 178                   | 876    | 1742 | 3.0%      | 2.2%   | 3.3% | 4.0%      | 3.7%   | 3.7% | 5%        | 4%     | 5%   |
| MBDB            | 183                   | 927    | 1754 | 4.1%      | 1.9%   | 3.8% | 5.3%      | 4.4%   | 4.2% | 7%        | 5%     | 6%   |
| Cocaine         | 451                   | 2194   | 4295 | 2.8%      | 1.0%   | 3.0% | 1.6%      | 1.4%   | 1.6% | 3%        | 2%     | 3%   |
| BEG             | 44.6                  | 219    | 439  | 1.7%      | 2.0%   | 2.1% | 2.1%      | 1.5%   | 3.7% | 3%        | 3%     | 4%   |
| EME             | 43.7                  | 217    | 427  | 1.0%      | 0.5%   | 0.8% | 2.1%      | 1.4%   | 2.4% | 2%        | 1%     | 3%   |
| Cocaethylene    | 45                    | 216    | 430  | 2.5%      | 2.9%   | 1.8% | 2.5%      | 2.2%   | 3.2% | 4%        | 4%     | 4%   |
| Morphine        | 364                   | 1744   | 3452 | 2.1%      | 1.9%   | 1.4% | 3.6%      | 1.8%   | 2.2% | 4%        | 3%     | 3%   |
| Codeine         | 356                   | 1714   | 3385 | 3.4%      | 2.5%   | 3.5% | 3.9%      | 3.1%   | 4.0% | 5%        | 4%     | 5%   |



| ANALYTE          | AVER. CONC<br>(pg/mg) |        |      | INTRA CV% |        |      | INTER CV% |        |      | TOTAL CV% |        |      |
|------------------|-----------------------|--------|------|-----------|--------|------|-----------|--------|------|-----------|--------|------|
|                  | Low                   | Medium | High | Low       | Medium | High | Low       | Medium | High | Low       | Medium | High |
| Dihydrocodeine   | 365                   | 1758   | 3444 | 1.8%      | 1.5%   | 1.8% | 3.7%      | 4.4%   | 3.9% | 4%        | 5%     | 4%   |
| 6-MAM            | 368                   | 1775   | 3510 | 2.3%      | 1.4%   | 1.9% | 3.5%      | 2.3%   | 2.5% | 4%        | 3%     | 3%   |
| THC              | 44.6                  | 220    | 432  | 1.8%      | 1.2%   | 0.8% | 2.0%      | 1.3%   | 1.1% | 3%        | 2%     | 1%   |
| ТНС-ОН           | 44.5                  | 216    | 427  | 3.8%      | 2.6%   | 3.0% | 6.1%      | 3.9%   | 2.7% | 7%        | 5%     | 4%   |
| Methadone        | 184                   | 888    | 1739 | 2.0%      | 1.4%   | 0.8% | 7.2%      | 1.9%   | 2.3% | 7%        | 2%     | 2%   |
| EDDP             | 44.5                  | 220    | 435  | 1.7%      | 1.3%   | 1.7% | 2.2%      | 1.6%   | 2.3% | 3%        | 2%     | 3%   |
| Buprenorphine    | 16.3                  | 86     | 172  | 8.4%      | 6.7%   | 4.5% | 8.2%      | 7.4%   | 7.1% | 12%       | 10%    | 8%   |
| Norbuprenorphine | 17.4                  | 78.9   | 156  | 9.9%      | 8.0%   | 8.2% | 7.3%      | 9.0%   | 9.0% | 12%       | 12%    | 12%  |
| Ketamine         | 177                   | 828    | 1622 | 8.8%      | 3.6%   | 2.1% | 7.0%      | 5.6%   | 4.8% | 11%       | 7%     | 5%   |

Table 9: Intra-assay, inter-assay and total precision

### **10 GENERAL LIMITATIONS**

- Kit must be used with the calibrators and the internal standard indicated in the kit instructions. The use of other standards or materials with this kit has not been validated.
- The use of different mobile phases, solutions or reagents other than those indicated in Paragraph 3.1 "KIT CONTENTS" has not been validated.
- This kit has been validated with configuration described in Chapter 9 "VALIDATION DATA".

The use of other triple quadrupole system, HPLC system and columns, which may require further development of the method, has not been validated.

• Do not use the kit after expiry date of its components.

#### **11 REFERENCES**

[1] Usman M., Naseer A., Baig Y., Jamshaid T., Shahwar M., Khurshuid S. (2019): Forensic Toxicological Analysis of Hair: a Review. *Egyptian Journal of Forensic Sciences*, 9:17

 [2] Nielsen M.K.K., Johansen S.S., Dalsgaard P.W., Linnet K. (2010): Simultaneous Screening and Quantification of 52 Common Pharmaceutical and Drugs of Abuse in Hair Using UPLC-TOF-MS. Forensic Sciences International, 196, 85-92

[3] Di Corcia D., Salomone A., Gerace E. (2018): Analysis of Drugs of Abuse in Hair Samples by Ultrahig-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). *Methods in Molecular Biology, 1810,* 107-114



[4] Koster R.A. (2015): The Influence of the Sample Matrix on LC-MS/MS Method Development and Analytical Performance. *University of Groningen* 

[5] Nadine R., Moosmann B., Auwarter V. (2013): Development and Validation of an LC-MS/MS Method for Quantification of Δ9-tetrahydriocannabinolic acid A (THCA-A), THC, CBN and CBD in Hair. J. Mass Spectrom., 48, 227-233

[6] Pragst F., Balikova M.A. (2006): State of the Art in Hair Analysis for Detection of Drugs and Alcohol Abuse. *Clinica Chimica Acta*, *370*, 17-49

**[7]** Leung K.W., Wong Z.C.F, Ho J.Y.M., Yip A.W.S, Cheung J.K.H., Ho K.K.L. Duan R., Tsim K.W.K. (2018): **Surveillance of Drug Abuse in Hong Kong by Hair Analysis Using LC-MS/MS.** *Drug Testing and Analysis 10(6)*, 977-983

[8] Shah I., Petroczi A., Uvacsek M., Ranky M, Naughton D.P. (2014): Hair-based Rapid Analyses for Multiple Drugs in Forencics and Doping: Application of Dynamic Multiple Reaction Monitoring with LC-MS/MS. *Chemistry Central Journal*, 8(73)

[9] Favretto D., Vogliardi S., Stocchero G., Nalesso A., Tucci M., Ferrara S.D. (2011): High Performance Liquid Chromatography-High Resolution Mass Spectrometry and Pulverized Extraction for the Quantification of Amphetamines, Cocaine, Opioids, Benzodiazepines, Antidepressants and Hallucinogens in 2.5 mg Hair Samples. J. Chrom. A, 1218, 6583-6595

[10] Pichini S., Pacifici R. (2010): Linee Guida per la Determinazione delle Sostanze d'Abuso nella Matrice Pilifera. *Istituto Superiore di Sanità* 



### **ANNEX 1: EC DECLARATION OF CONFORMITY**

B.S.N. srl as Manufacturer and the only responsible for in-vitro diagnostic medical devices placed on the market under his own name, declares that these products meet all the provisions of the Legislative Decree n. 332 of the 8<sup>th</sup> September 2000, directive of in vitro diagnostic medical device 98/79/EC (in particular with regard to annex I) and subsequent amendments and additions. According to point 9 of Legislative Decree 332/2000 and subsequent amendments, the in vitro diagnostic medical device belongs to the fourth category of devices, that is GENERIC IN VITRO MEDICAL-DIAGNOSTIC DEVICES.

| COMPONENT                             | CODE     | CERTIFICATION                                       |
|---------------------------------------|----------|-----------------------------------------------------|
| FloMass Drugs of Abuse in Hair Matrix | EUM20100 | CE-IVD marked medical device according to Annex III |
| Mobile Phase A                        | EUM02011 | CE-IVD marked medical device according to Annex III |
| Mobile Phase B                        | EUM02012 | CE-IVD marked medical device according to Annex III |
| Mobile Phase C                        | EUM02013 | CE-IVD marked medical device according to Annex III |
| Washing Solution                      | EUM20021 | CE-IVD marked medical device according to Annex III |
| Reconditioning Solution               | EUM20022 | CE-IVD marked medical device according to Annex III |
| Extracting Solution                   | EUM20023 | CE-IVD marked medical device according to Annex III |
| Diluting Solution                     | EUM20024 | CE-IVD marked medical device according to Annex III |
| Internal Standard Mix                 | EUM20031 | CE-IVD marked medical device according to Annex III |
| Calibrators in Hair Matrix            | EUM20041 | CE-IVD marked medical device according to Annex III |
| Controls in Hair Matrix               | EUM20051 | CE-IVD marked medical device according to Annex III |
| Chromatographic Column                | EUM00C02 | CE-IVD marked medical device according to Annex III |
| Precolumns                            | EUM00A04 | CE-IVD marked medical device according to Annex III |
| Holder + Precolumn                    | EUM00A05 | CE-IVD marked medical device according to Annex III |

Quality assurance system complying following directives:

- ✓ UNI CEI EN ISO 13485:2016
- ✓ UNI EN ISO 9001:2015

This declaration becomes invalid if modifications are introduced without B.S.N. Srl consent. It is declared that the product is placed on the market in non-sterile package.

It is declared that B.S.N. Srl will keep all documents referred to the Annex III of the European Directive 98/79/EC at the disposal of the competent authorities for a 5-year period from the last date of production of the kit.

After the placing on the market of the products in question, it is declared that the Manufacturer has notified the competent authority of the application of post-market surveillance as requested from the European Directive 98/79/CE.

This declaration is valid five years from the date of issue.

Castelleone (CR), 13 May 2022

Director

Giunto Guniliu 20